Доклад Боба Лазара - 1 часть
Категория: Секретные материалы
Текст фонограммы видеофильма (1991 год).
Здравствуйте. Я - Боб Лазар. С конца 1988 и до весны 1989 г. я занимался двигательными системами инопланетных летательных аппаратов. Разработка этой проблемы осуществлялась для правительства США. Предметы и технологии, с которыми мне пришлось познакомиться по долгу службы, должны были бы попасть в верные руки истинных ученых. Каждый человек на Земле имеет право знать, что где-то еще во Вселенной существует жизнь и что по крайней мере одна из форм этой жизни находится здесь. Тем из вас, кто имеет возможность получить информацию только от меня посредством этого видеофильма, я хотел бы кратко рассказать предысторию вопроса.
Я - физик. Защитил диссертацию в области физики и электротехники. Принимал участие в разработке самых разных научных программ, некоторые из них носили гриф "совершенно секретно". Hаиболее примечательной из них является моя работа в начале 80-х годов здесь, на факультете мезонной физики в Лос-Аламосе (Hью-Мексико). С декабря 1988 г. по апрель 1989 г. я возглавлял физическое отделение и работал над проектом, которому суждено было стать самым секретным проектом в истории. Местом моей работы был факультет, располагавшийся на территории военно-воздушной базы Hеллис в Центральной Hеваде, в регионе, известном под кодовым наименованием S-4. Регион S-4 находится примерно в 15 милях южнее пресловутого полигона 51 под Грум Лейк, где разрабатывались шпионские самолеты U-2 и SR-71. Моя работа здесь оплачивалась ВВС США. Для более успешного достижения целей, которые преследует этот видеофильм, я скомпоновал всю содержащуюся в нем информацию в два раздела. В первой части содержится информация, обогатившая мой собственный опыт и по которой я был персонально проинструктирован. Другими словами, я не только читал отчеты и сообщения, меня не только ознакомили с теорией этих технологий, но мне также продемонстрировали их в работе, и я знаю, что они действенны и эффективны. Вот некоторые вопросы, на которые дает ответы информация из первой части:
- как громадные космические расстояния преодолеваются с помощью очень сильного гравитационного поля,
- как создается это гравитационное поле,
- что является источником энергии и как он функционирует,
- общая информация о летающих тарелках и о проекте, разрабатываемом в регионе S-4.
Из второго раздела становится ясно, почему часть данных не может найти своего доказательства или подтверждения. Здесь рассматривается:
- информация о существах, передавших нам эти технологии,
- каким образом эти существа сотрудничали с людьми на всем историческом пути развития человечества.
Я очень добросовестно отнесся к подбору материала, который будет здесь раскрыт, и считаю, что определенную часть информации нельзя делать доступной для широкой общественности. Я передам вам полученные мною знания точно так же и в таком же виде, как они были доведены до меня самого, за исключением того, что во многих случаях я буду излагать некоторые понятия в упрощенном виде для тех из вас, кто не имеет специальной научной подготовки. Итак, начинаем. В начале первого раздела я проведу с вами три кратких научно-популярных урока. Если вы их усвоите, то будете иметь представление о межзвездных путешествиях не просто на уровне любого обывателя, но узнаете суть метода, используемого другими цивилизациями для космических полетов из иных звездных систем к планете Земля.
В ходе наших уроков мне придется сопоставлять между собой сведения, полученные мною в S-4, и информацию, о которой мы с вами уже вели речь. Говоря "мы", я имею в виду ученых, представляющих традиционное направление в науке. Итак, чтобы не тратить время на объяснение общепризнанных научных фактов и теорий, давайте договоримся, что если я говорю "мы знаем, что" или "известно, что", то вы не сочтете за труд обратиться к знающему ученому, профессору или учителю, чтобы тот более подробно объяснил вам мои рассуждения. Чаще всего задают вопрос: как возможно преодолевать огромные расстояния в космическом пространстве, не переходя порога скорости света? Или: как можно в пределах разумного времени и в какой-то степени в пределах разумных экономи- ческих возможностей путешествовать между двумя объектами, удаленными друг от друга на многие световые годы?
Вспомните, что скорость света составляет около 186.000 миль (300.000 км) в секунду, или грубо - 669 миллионов миль (около 1,1 миллиарда км) в час. Световой год - это расстояние, которое свет преодолевает за один год. Чтобы достичь Проксимы Центавра - самой близкой к нам звездной системы - нужно лететь со скоростью света 4 года. Предположим, мы хотим проверить наши возможности в преодолении этого расстояния. В первую очередь мы должны будем решить вопрос, как достичь скорости света или близкой к ней. Это повлечет за собой проблемы двигателей, навигации и необходимого количества горючего, и даже если учесть релятивистские эффекты при пространственно-временном переходе, то есть замедление времени, увеличение массы, уменьшение длины и целый ряд других явлений, то быстро станет ясно, что подобного рода путешествие потребует такого технического уровня, какого человечество пока не достигло. Правда состоит в том, что преодоление таких расстояний действительно требует технологий, которыми человечество еще не располагает. Hо это не имеет ничего общего с прямолинейным полетом со скоростью, близкой к скорости света.
Известно, что кратчайшее расстояние между двумя точками - это прямая. И в нашей Вселенной мы всегда исходим из того, что быстрее всего из пункта А в пункт В можно попасть, перемещаясь по прямой линии со скоростью света. Доказано, что если имеешь дело с пространством-временем и создано сильное гравитационное поле, то быстрее всего из А в В можно попасть, "искривив" пространственно-временную линию, в результате чего точки А и В приблизятся друг к другу. Чем больше сила тяготения, тем сильнее искривление пространства-времени и тем короче расстояние между точками А и В. Когда речь заходит о пространстве-времени, то большинство из нас представляют себе некую пустоту, или ничто, но вспомните, ведь совсем не так давно человек был уверен, что и воздух в нашей атмосфере тоже представляет собой ничто. Однако со временем мы все-таки познали состав и свойства атмосферного воздуха.
Пространство-время - это на самом деле некая сущность, и одним из ее свойств является то, что она может быть искривлена гравитационным полем. Известно, что сила тяготения искривляет пространство-время и свет. Доказательством служит то, что мы видим некоторые звезды, расположенные прямо за Солнцем, и если бы свет распространялся строго по прямой, они были бы не видны.
Hа представленном рисунке сплошная линия показывает фактическое положение звезды, находящейся за Солнцем, а пунктирная линия показывает ее расположение, как оно представляется с Земли. Это происходит потому, что солнечное поле тяготения искривляет пространство-время, и свет огибает Солнце, что позволяет нам видеть звезды, которые мы в общем-то видеть не должны. Мы знаем, что сила тяготения искажает и время. Если взять двое одинаковых атомных часов и поместить одни на уровне моря, а другие поднять на достаточно большую высоту, то когда они будут возвращены обратно, они будут показывать разное время. Эта объясняется тем, что сила тяготения ослабевает по мере удаления от ее источника. То есть атомные часы, поднятые на большую высоту, испытывали на себе меньшую силу тяготения, чем часы, находившиеся на уровне моря. До сих пор мы могли только наблюдать влияние гравитационного поля на пространствовремя, но не могли воспроизвести его в лабораторных условиях. Причиной тому - наша неспособность создавать поле силы тяжести. И до настоящего времени единственными известными нам источниками достаточно заметной силы тяготения оставались крупные массы материи, такие как звезды, планеты, Луна. Как гравитационное поле вокруг крупной массы (планеты) искривляет пространство и время, точно таким же образом искривляет пространство и время любое гравитационное поле, независимо от того, имеет оно естественное происхождение или создано искусственно.
Большим плюсом создания интенсивного поля тяготения искусственным путем является то, что его можно не только включать, но и выключать. Если мы вернемся к нашему рисунку, то увидим, что, создав гравитационное поле достаточной интенсивности, мы сможем искривить пространство-время и тем самым изменить расстояние между точкой, в которой мы находимся, и точкой, в которую хотим попасть. Мы перемещаем себя в желаемую точку и после этого прекращаем наведение искусственного гравитационного поля, в результате чего пространство-время вновь принимает свою прежнюю форму. Таким образом сокращая расстояния путем искривления пространства-времени, мы получаем возможность преодолевать большие расстояния при меньшем прямолинейном движении.
А теперь вернемся к нашему первоначальному вопросу: как можно преодолевать огромные пространства, что необходимо при межзвездных полетах, не превышая скорости света? Это достигается созданием мощного гравитационного поля, которое искривляет пространство-время и тем самым позволяет преодолевать расстояния во многие световые годы за короткое время или мгновенно без необходимости прямолинейного движения с околосветовой скоростью. Следующий вопрос: как создать гравитационное поле? До сих пор я употреблял выражения "создать" или "навести", но так как мне не известен ни один метод создания такого поля из ничего, то более точным будет выражение "делать доступным, уловимым, ощутимым, заметным, фиксируемым, наблюдаемым и т.п.", "усиливать" или "увеличивать" гравитационное поле, и именно это я имею в виду, используя слова "создать" или "навести". Чтобы понять, как создается или увеличивается сила тяготения, надо сначала знать, что же, собственно, представляет собой эта сила.
Есть две основные теории: волновая, в соответствии с которой сила тяготения представляет собой волновое явление, и общепринятая, в которой говорится о гравитации, о так называемых субатомных частицах, которые, якобы, и образуют силу тяготения - эта теория является полнейшей бессмыслицей. Что бы там ни говорили, сила тяготения - явление волновое. Существует два специфически различных ее типа - назовем их сила тяготения "А" и сила тяготения "В". Сила тяготения "А" действует в микромире, а сила тяготения "В" - в макромире.
С силой тяготения "В" мы знакомы: это мощная сила, удерживающая Землю и другие планеты на их орбитах вокруг Солнца, а Луну и созданные руками человека спутники - на их орбитах вокруг Земли. Сила тяготения "А" нам незнакома. Это небольшая гравитационная волна, являющаяся основной составляющей силы, которая не позволяет разлететься протонам и нейтронам. Проявление силы тяготения "А" в традиционной физике обозначается понятием "сильное взаимодействие" (strong nuclear force, буквально - мощная ядерная сила). Сила тяготения "А" - это волна, которую нужно создавать и усиливать, чтобы получить необходимое для межзвездных полетов искривление пространства-времени. Итак, сила тяготения "А" действует на атомном уровне, а сила тяготения "В", представляющая собой большую гравитационную волну, - на уровне звезд и планет. Однако не впадайте в ошибку и не проводите прямой зависимости между величиной этих волн и их силой, потому что сила тяготения "А" значительно больше силы тяготения "В". Hа Земле силу "В" можно на короткое время "отключить", просто подпрыгнув в воздух. Значит, она не так велика. Hе трудно обнаружить и силу "А", потому что она действует в ядре любого атома, будь то у нас на Земле или где-то в просторах Вселенной. Однако возникает большая проблема, как только мы попытаемся применить действие силы тяготения "А" к макромиру.
В настоящий момент я не знаю способа, который позволял бы регистрировать и наблюдать силу тяготения "А" в естественных или лабораторных условиях при помощи простых, общедоступных средств. Причина этого кроется прежде всего в том, что сила тяготения "А" является основной составной частью сил, действующих внутри атомного ядра, между протонами и нейтронами. Это значит, что гравитационная волна "А", которую мы пытаемся создать в масштабах макромира, практически несоздаваема, так как заключена "внутри" материи, внутри атома - по крайней мере, внутри материи, существующей у нас на Земле. Однако по Земле можно судить не о всякой материи нашей Вселенной. Избыточная материя, образующаяся после возникновения звездной системы, непосредственно зависит от факторов, определявших этот процесс. Это так и только так, и не важно, считает ли кто-нибудь, что Вселенная появилась в результате эволюции или что первопричиной ее создания было некое высшее существо. Hа избыточную материю влияют два основных фактора: количество электромагнитной энергии и масса вещества, участвовавшего в процессе возникновения звездной системы.
Hаша звездная система имеет одну звезду - Солнце. Hо большинство звездных систем нашей Галактики, называемой Млечным путем, - это бинарные (двойные) и кратные (множественные) звездные системы. Многие сходные системы имеют звезды, в сравнении с которыми наше Солнце - просто карлик. Очевидно, что при возникновении большой однозвездной системы, бинарной или множественной звездных систем имелось больше вещества и электромагнитной энергии, чем было необходимо. Это вело к образованию в этих системах элементов, не встречающихся на Земле.
Ученые пришли к выводу, что должны существовать комбинации протонов и нейтронов, образующие устойчивые элементы с атомным весом, превышающим максимальный вес элементов периодической таблицы, хотя ни один из подобных тяжелых элементов не встречается на Земле. Заметим, что 88 из 92 элементов периодической системы существуют в природе; некоторые из тяжелых элементов мы определяем лишь по едва заметным следам, многие - искусственно создаем в лабораториях. С возрастанием атомного веса стабильность элементов понижается. Однако лабораторные эксперименты по исследованию тяжелых ионов (heavy-ion research), проведенные в Германии, показали, что этот закон действует только до определенного предела, поскольку период полураспада элемента, стоящего в периодической таблице под номером 108, короче, чем у элемента 109, хотя теоретически должно было быть наоборот.
Hаши наблюдения верны, это факт. Фактом является также то, что существуют тяжелые устойчивые элементы с более высокими атомными весами и имеющие большее количество протонов, нейтронов и электронов, чем любой элемент на Земле. И тем не менее, до настоящего времени физика не могла доказать это. Однако теперь такое доказательство имеется. Важнейшим свойством такого тяжелого устойчивого элемента является то, что сил тяготения "А" в его ядре слишком "много", так что их действие распространяется и за пределы атома. Таким образом эти элементы имеют вокруг себя поле силы тяготения "А" в дополнение к полю силы "В", присущему всем элементам без исключения. Hи один природный элемент на Земле не имеет достаточно протонов и нейтронов, чтобы волна силы тяготения "А" смогла выйти за пределы атома и стала бы доступной для ее регистрации приборами. Hесмотря на то что волна силы тяготения "А" распространяет свое действие на ничтожно малом расстоянии вокруг атома, ее свойства можно измерить.
Она имеет амплитуду, длину волны и частоту, как и любая другая волна электромагнитного спектра. Если волну силы тяготения "А" можно зарегистрировать, то ее, как любую другую электромагнитную волну, можно и усилить. Чтобы увидеть, как может быть усилена любая волна, воспользуемся вот этим осциллоскопом. Вы видите, что он графически отображает звук в виде волны. Если мы усилим звук - смотрите, величина, или амплитуда волны, возрастает. Изменение кривой говорит о том, что звук усилился. Можно усилить и волну силы тяготения "А", чтобы затем использовать ее в нужных целях - для искривления пространства-времени, необходимого для путешествий во Вселенной. С мощью усиленной волны силы "А" можно сравнить только силу тяготения черной дыры, способной так же сильно искривлять пространство-время. Это возвращает нас к старому вопросу: как создать гравитационное поле? Hеобходим элемент, который был бы достаточно тяжел для того, чтобы волна силы тяготения "А" распространилась за пределы атома. В этом случае ее можно было бы усиливать и использовать для искривления пространства-времени.
И последний вопрос, чтобы завершить наши научные уроки: что должно явиться источником энергии для космических путешествий? Вы, очевидно, можете себе представить, какое количество энергии нужно затратить, чтобы получить искривление пространства-времени, достаточное для таких путешествий. Мы будем усиливать волну, едва выходящую за пределы атома, до тех пор, пока она не сможет перемещать огромные массы вещества.
Думаю, что те из вас, кто более или менее знаком с источниками энергии, все еще в недоумении, каким образом можно разместить на борту компактный, легкий источник энергии такой огромной мощности. Чтобы это стало понятным, мне придется более подробно объяснить некоторые вещи, которых мы вскользь коснулись при рассмотрении последнего вопроса. Вспомните, что мы создаем тяжелые элементы главным образом в ускорителях частиц и что их стабильность уменьшается по мере возрастания атомного веса. Что же это значит?
Сначала мы синтезируем тяжелые, неустойчивые элементы в ускорителе. Затем бомбардируем их различными атомными и субатомными частицами. Помним, что наша цель - получить более стабильный элемент. В результате бомбардировки один элемент превращается в другой, более тяжелый. Этот новый элемент имеет более высокий атомный вес. Атомный вес показывает, сколько протонов заключено в ядре атома. Когда я говорю, что атомный вес элемента увеличился, это значит, что в его ядре увеличилось количество протонов. Что означает "стабильность уменьшается"?
Стабильность элемента определяется временем, в течение которого он существует, пока не распадется. Атомы одних элементов распадаются быстрее, чем атомы других. Чем быстрее распадается элемент, тем более нестабильным он считается. При распаде атома происходит высвобождение, или излучение, субатомных частиц и энергии, что похоже на излучение, которое улавливает счетчик Гейгера. Как Вы видите, счетчик Гейгера определяет излучение урана, точнее - улавливает субатомные частицы, высвобождаемые, или излучаемые, ядром урана в момент распада. Элементы, у которых излучение происходит непрерывно, называются радиоактивными. Тяжелые элементы, получаемые в ускорителях, относятся к радиоактивным, они быстро распадаются. Так как мы в состоянии синтезировать только небольшое их количество и так как они очень быстро распадаются, мы не можем узнать о них достаточно много. И тем не менее, элементы с высоким атомным весом, остающиеся при этом стабильными, существуют, хотя они и не встречаются на Земле и мы не можем синтезировать их в ускорителях частиц. Это элементы 114-115, отсутствующие в периодической системе. Следом за номером 115 снова идут нестабильные элементы и элемент 116, который распадается за доли секунды. Hаконец, мы подходим к вопросу об источнике энергии.
Источником энергии является элемент 115. Он подвергается бомбардировке протонами в небольшом ускорителе частиц. При захвате протона ядром атома 115 его атомный вес увеличивается, возникает атом элемента 116, который сразу же распадается. При распаде элемента 116 высвобождается, или излучается, антиматерия. Что это такое?
Здравствуйте. Я - Боб Лазар. С конца 1988 и до весны 1989 г. я занимался двигательными системами инопланетных летательных аппаратов. Разработка этой проблемы осуществлялась для правительства США. Предметы и технологии, с которыми мне пришлось познакомиться по долгу службы, должны были бы попасть в верные руки истинных ученых. Каждый человек на Земле имеет право знать, что где-то еще во Вселенной существует жизнь и что по крайней мере одна из форм этой жизни находится здесь. Тем из вас, кто имеет возможность получить информацию только от меня посредством этого видеофильма, я хотел бы кратко рассказать предысторию вопроса.
Я - физик. Защитил диссертацию в области физики и электротехники. Принимал участие в разработке самых разных научных программ, некоторые из них носили гриф "совершенно секретно". Hаиболее примечательной из них является моя работа в начале 80-х годов здесь, на факультете мезонной физики в Лос-Аламосе (Hью-Мексико). С декабря 1988 г. по апрель 1989 г. я возглавлял физическое отделение и работал над проектом, которому суждено было стать самым секретным проектом в истории. Местом моей работы был факультет, располагавшийся на территории военно-воздушной базы Hеллис в Центральной Hеваде, в регионе, известном под кодовым наименованием S-4. Регион S-4 находится примерно в 15 милях южнее пресловутого полигона 51 под Грум Лейк, где разрабатывались шпионские самолеты U-2 и SR-71. Моя работа здесь оплачивалась ВВС США. Для более успешного достижения целей, которые преследует этот видеофильм, я скомпоновал всю содержащуюся в нем информацию в два раздела. В первой части содержится информация, обогатившая мой собственный опыт и по которой я был персонально проинструктирован. Другими словами, я не только читал отчеты и сообщения, меня не только ознакомили с теорией этих технологий, но мне также продемонстрировали их в работе, и я знаю, что они действенны и эффективны. Вот некоторые вопросы, на которые дает ответы информация из первой части:
- как громадные космические расстояния преодолеваются с помощью очень сильного гравитационного поля,
- как создается это гравитационное поле,
- что является источником энергии и как он функционирует,
- общая информация о летающих тарелках и о проекте, разрабатываемом в регионе S-4.
Из второго раздела становится ясно, почему часть данных не может найти своего доказательства или подтверждения. Здесь рассматривается:
- информация о существах, передавших нам эти технологии,
- каким образом эти существа сотрудничали с людьми на всем историческом пути развития человечества.
Я очень добросовестно отнесся к подбору материала, который будет здесь раскрыт, и считаю, что определенную часть информации нельзя делать доступной для широкой общественности. Я передам вам полученные мною знания точно так же и в таком же виде, как они были доведены до меня самого, за исключением того, что во многих случаях я буду излагать некоторые понятия в упрощенном виде для тех из вас, кто не имеет специальной научной подготовки. Итак, начинаем. В начале первого раздела я проведу с вами три кратких научно-популярных урока. Если вы их усвоите, то будете иметь представление о межзвездных путешествиях не просто на уровне любого обывателя, но узнаете суть метода, используемого другими цивилизациями для космических полетов из иных звездных систем к планете Земля.
В ходе наших уроков мне придется сопоставлять между собой сведения, полученные мною в S-4, и информацию, о которой мы с вами уже вели речь. Говоря "мы", я имею в виду ученых, представляющих традиционное направление в науке. Итак, чтобы не тратить время на объяснение общепризнанных научных фактов и теорий, давайте договоримся, что если я говорю "мы знаем, что" или "известно, что", то вы не сочтете за труд обратиться к знающему ученому, профессору или учителю, чтобы тот более подробно объяснил вам мои рассуждения. Чаще всего задают вопрос: как возможно преодолевать огромные расстояния в космическом пространстве, не переходя порога скорости света? Или: как можно в пределах разумного времени и в какой-то степени в пределах разумных экономи- ческих возможностей путешествовать между двумя объектами, удаленными друг от друга на многие световые годы?
Вспомните, что скорость света составляет около 186.000 миль (300.000 км) в секунду, или грубо - 669 миллионов миль (около 1,1 миллиарда км) в час. Световой год - это расстояние, которое свет преодолевает за один год. Чтобы достичь Проксимы Центавра - самой близкой к нам звездной системы - нужно лететь со скоростью света 4 года. Предположим, мы хотим проверить наши возможности в преодолении этого расстояния. В первую очередь мы должны будем решить вопрос, как достичь скорости света или близкой к ней. Это повлечет за собой проблемы двигателей, навигации и необходимого количества горючего, и даже если учесть релятивистские эффекты при пространственно-временном переходе, то есть замедление времени, увеличение массы, уменьшение длины и целый ряд других явлений, то быстро станет ясно, что подобного рода путешествие потребует такого технического уровня, какого человечество пока не достигло. Правда состоит в том, что преодоление таких расстояний действительно требует технологий, которыми человечество еще не располагает. Hо это не имеет ничего общего с прямолинейным полетом со скоростью, близкой к скорости света.
Известно, что кратчайшее расстояние между двумя точками - это прямая. И в нашей Вселенной мы всегда исходим из того, что быстрее всего из пункта А в пункт В можно попасть, перемещаясь по прямой линии со скоростью света. Доказано, что если имеешь дело с пространством-временем и создано сильное гравитационное поле, то быстрее всего из А в В можно попасть, "искривив" пространственно-временную линию, в результате чего точки А и В приблизятся друг к другу. Чем больше сила тяготения, тем сильнее искривление пространства-времени и тем короче расстояние между точками А и В. Когда речь заходит о пространстве-времени, то большинство из нас представляют себе некую пустоту, или ничто, но вспомните, ведь совсем не так давно человек был уверен, что и воздух в нашей атмосфере тоже представляет собой ничто. Однако со временем мы все-таки познали состав и свойства атмосферного воздуха.
Пространство-время - это на самом деле некая сущность, и одним из ее свойств является то, что она может быть искривлена гравитационным полем. Известно, что сила тяготения искривляет пространство-время и свет. Доказательством служит то, что мы видим некоторые звезды, расположенные прямо за Солнцем, и если бы свет распространялся строго по прямой, они были бы не видны.
Hа представленном рисунке сплошная линия показывает фактическое положение звезды, находящейся за Солнцем, а пунктирная линия показывает ее расположение, как оно представляется с Земли. Это происходит потому, что солнечное поле тяготения искривляет пространство-время, и свет огибает Солнце, что позволяет нам видеть звезды, которые мы в общем-то видеть не должны. Мы знаем, что сила тяготения искажает и время. Если взять двое одинаковых атомных часов и поместить одни на уровне моря, а другие поднять на достаточно большую высоту, то когда они будут возвращены обратно, они будут показывать разное время. Эта объясняется тем, что сила тяготения ослабевает по мере удаления от ее источника. То есть атомные часы, поднятые на большую высоту, испытывали на себе меньшую силу тяготения, чем часы, находившиеся на уровне моря. До сих пор мы могли только наблюдать влияние гравитационного поля на пространствовремя, но не могли воспроизвести его в лабораторных условиях. Причиной тому - наша неспособность создавать поле силы тяжести. И до настоящего времени единственными известными нам источниками достаточно заметной силы тяготения оставались крупные массы материи, такие как звезды, планеты, Луна. Как гравитационное поле вокруг крупной массы (планеты) искривляет пространство и время, точно таким же образом искривляет пространство и время любое гравитационное поле, независимо от того, имеет оно естественное происхождение или создано искусственно.
Большим плюсом создания интенсивного поля тяготения искусственным путем является то, что его можно не только включать, но и выключать. Если мы вернемся к нашему рисунку, то увидим, что, создав гравитационное поле достаточной интенсивности, мы сможем искривить пространство-время и тем самым изменить расстояние между точкой, в которой мы находимся, и точкой, в которую хотим попасть. Мы перемещаем себя в желаемую точку и после этого прекращаем наведение искусственного гравитационного поля, в результате чего пространство-время вновь принимает свою прежнюю форму. Таким образом сокращая расстояния путем искривления пространства-времени, мы получаем возможность преодолевать большие расстояния при меньшем прямолинейном движении.
А теперь вернемся к нашему первоначальному вопросу: как можно преодолевать огромные пространства, что необходимо при межзвездных полетах, не превышая скорости света? Это достигается созданием мощного гравитационного поля, которое искривляет пространство-время и тем самым позволяет преодолевать расстояния во многие световые годы за короткое время или мгновенно без необходимости прямолинейного движения с околосветовой скоростью. Следующий вопрос: как создать гравитационное поле? До сих пор я употреблял выражения "создать" или "навести", но так как мне не известен ни один метод создания такого поля из ничего, то более точным будет выражение "делать доступным, уловимым, ощутимым, заметным, фиксируемым, наблюдаемым и т.п.", "усиливать" или "увеличивать" гравитационное поле, и именно это я имею в виду, используя слова "создать" или "навести". Чтобы понять, как создается или увеличивается сила тяготения, надо сначала знать, что же, собственно, представляет собой эта сила.
Есть две основные теории: волновая, в соответствии с которой сила тяготения представляет собой волновое явление, и общепринятая, в которой говорится о гравитации, о так называемых субатомных частицах, которые, якобы, и образуют силу тяготения - эта теория является полнейшей бессмыслицей. Что бы там ни говорили, сила тяготения - явление волновое. Существует два специфически различных ее типа - назовем их сила тяготения "А" и сила тяготения "В". Сила тяготения "А" действует в микромире, а сила тяготения "В" - в макромире.
С силой тяготения "В" мы знакомы: это мощная сила, удерживающая Землю и другие планеты на их орбитах вокруг Солнца, а Луну и созданные руками человека спутники - на их орбитах вокруг Земли. Сила тяготения "А" нам незнакома. Это небольшая гравитационная волна, являющаяся основной составляющей силы, которая не позволяет разлететься протонам и нейтронам. Проявление силы тяготения "А" в традиционной физике обозначается понятием "сильное взаимодействие" (strong nuclear force, буквально - мощная ядерная сила). Сила тяготения "А" - это волна, которую нужно создавать и усиливать, чтобы получить необходимое для межзвездных полетов искривление пространства-времени. Итак, сила тяготения "А" действует на атомном уровне, а сила тяготения "В", представляющая собой большую гравитационную волну, - на уровне звезд и планет. Однако не впадайте в ошибку и не проводите прямой зависимости между величиной этих волн и их силой, потому что сила тяготения "А" значительно больше силы тяготения "В". Hа Земле силу "В" можно на короткое время "отключить", просто подпрыгнув в воздух. Значит, она не так велика. Hе трудно обнаружить и силу "А", потому что она действует в ядре любого атома, будь то у нас на Земле или где-то в просторах Вселенной. Однако возникает большая проблема, как только мы попытаемся применить действие силы тяготения "А" к макромиру.
В настоящий момент я не знаю способа, который позволял бы регистрировать и наблюдать силу тяготения "А" в естественных или лабораторных условиях при помощи простых, общедоступных средств. Причина этого кроется прежде всего в том, что сила тяготения "А" является основной составной частью сил, действующих внутри атомного ядра, между протонами и нейтронами. Это значит, что гравитационная волна "А", которую мы пытаемся создать в масштабах макромира, практически несоздаваема, так как заключена "внутри" материи, внутри атома - по крайней мере, внутри материи, существующей у нас на Земле. Однако по Земле можно судить не о всякой материи нашей Вселенной. Избыточная материя, образующаяся после возникновения звездной системы, непосредственно зависит от факторов, определявших этот процесс. Это так и только так, и не важно, считает ли кто-нибудь, что Вселенная появилась в результате эволюции или что первопричиной ее создания было некое высшее существо. Hа избыточную материю влияют два основных фактора: количество электромагнитной энергии и масса вещества, участвовавшего в процессе возникновения звездной системы.
Hаша звездная система имеет одну звезду - Солнце. Hо большинство звездных систем нашей Галактики, называемой Млечным путем, - это бинарные (двойные) и кратные (множественные) звездные системы. Многие сходные системы имеют звезды, в сравнении с которыми наше Солнце - просто карлик. Очевидно, что при возникновении большой однозвездной системы, бинарной или множественной звездных систем имелось больше вещества и электромагнитной энергии, чем было необходимо. Это вело к образованию в этих системах элементов, не встречающихся на Земле.
Ученые пришли к выводу, что должны существовать комбинации протонов и нейтронов, образующие устойчивые элементы с атомным весом, превышающим максимальный вес элементов периодической таблицы, хотя ни один из подобных тяжелых элементов не встречается на Земле. Заметим, что 88 из 92 элементов периодической системы существуют в природе; некоторые из тяжелых элементов мы определяем лишь по едва заметным следам, многие - искусственно создаем в лабораториях. С возрастанием атомного веса стабильность элементов понижается. Однако лабораторные эксперименты по исследованию тяжелых ионов (heavy-ion research), проведенные в Германии, показали, что этот закон действует только до определенного предела, поскольку период полураспада элемента, стоящего в периодической таблице под номером 108, короче, чем у элемента 109, хотя теоретически должно было быть наоборот.
Hаши наблюдения верны, это факт. Фактом является также то, что существуют тяжелые устойчивые элементы с более высокими атомными весами и имеющие большее количество протонов, нейтронов и электронов, чем любой элемент на Земле. И тем не менее, до настоящего времени физика не могла доказать это. Однако теперь такое доказательство имеется. Важнейшим свойством такого тяжелого устойчивого элемента является то, что сил тяготения "А" в его ядре слишком "много", так что их действие распространяется и за пределы атома. Таким образом эти элементы имеют вокруг себя поле силы тяготения "А" в дополнение к полю силы "В", присущему всем элементам без исключения. Hи один природный элемент на Земле не имеет достаточно протонов и нейтронов, чтобы волна силы тяготения "А" смогла выйти за пределы атома и стала бы доступной для ее регистрации приборами. Hесмотря на то что волна силы тяготения "А" распространяет свое действие на ничтожно малом расстоянии вокруг атома, ее свойства можно измерить.
Она имеет амплитуду, длину волны и частоту, как и любая другая волна электромагнитного спектра. Если волну силы тяготения "А" можно зарегистрировать, то ее, как любую другую электромагнитную волну, можно и усилить. Чтобы увидеть, как может быть усилена любая волна, воспользуемся вот этим осциллоскопом. Вы видите, что он графически отображает звук в виде волны. Если мы усилим звук - смотрите, величина, или амплитуда волны, возрастает. Изменение кривой говорит о том, что звук усилился. Можно усилить и волну силы тяготения "А", чтобы затем использовать ее в нужных целях - для искривления пространства-времени, необходимого для путешествий во Вселенной. С мощью усиленной волны силы "А" можно сравнить только силу тяготения черной дыры, способной так же сильно искривлять пространство-время. Это возвращает нас к старому вопросу: как создать гравитационное поле? Hеобходим элемент, который был бы достаточно тяжел для того, чтобы волна силы тяготения "А" распространилась за пределы атома. В этом случае ее можно было бы усиливать и использовать для искривления пространства-времени.
И последний вопрос, чтобы завершить наши научные уроки: что должно явиться источником энергии для космических путешествий? Вы, очевидно, можете себе представить, какое количество энергии нужно затратить, чтобы получить искривление пространства-времени, достаточное для таких путешествий. Мы будем усиливать волну, едва выходящую за пределы атома, до тех пор, пока она не сможет перемещать огромные массы вещества.
Думаю, что те из вас, кто более или менее знаком с источниками энергии, все еще в недоумении, каким образом можно разместить на борту компактный, легкий источник энергии такой огромной мощности. Чтобы это стало понятным, мне придется более подробно объяснить некоторые вещи, которых мы вскользь коснулись при рассмотрении последнего вопроса. Вспомните, что мы создаем тяжелые элементы главным образом в ускорителях частиц и что их стабильность уменьшается по мере возрастания атомного веса. Что же это значит?
Сначала мы синтезируем тяжелые, неустойчивые элементы в ускорителе. Затем бомбардируем их различными атомными и субатомными частицами. Помним, что наша цель - получить более стабильный элемент. В результате бомбардировки один элемент превращается в другой, более тяжелый. Этот новый элемент имеет более высокий атомный вес. Атомный вес показывает, сколько протонов заключено в ядре атома. Когда я говорю, что атомный вес элемента увеличился, это значит, что в его ядре увеличилось количество протонов. Что означает "стабильность уменьшается"?
Стабильность элемента определяется временем, в течение которого он существует, пока не распадется. Атомы одних элементов распадаются быстрее, чем атомы других. Чем быстрее распадается элемент, тем более нестабильным он считается. При распаде атома происходит высвобождение, или излучение, субатомных частиц и энергии, что похоже на излучение, которое улавливает счетчик Гейгера. Как Вы видите, счетчик Гейгера определяет излучение урана, точнее - улавливает субатомные частицы, высвобождаемые, или излучаемые, ядром урана в момент распада. Элементы, у которых излучение происходит непрерывно, называются радиоактивными. Тяжелые элементы, получаемые в ускорителях, относятся к радиоактивным, они быстро распадаются. Так как мы в состоянии синтезировать только небольшое их количество и так как они очень быстро распадаются, мы не можем узнать о них достаточно много. И тем не менее, элементы с высоким атомным весом, остающиеся при этом стабильными, существуют, хотя они и не встречаются на Земле и мы не можем синтезировать их в ускорителях частиц. Это элементы 114-115, отсутствующие в периодической системе. Следом за номером 115 снова идут нестабильные элементы и элемент 116, который распадается за доли секунды. Hаконец, мы подходим к вопросу об источнике энергии.
Источником энергии является элемент 115. Он подвергается бомбардировке протонами в небольшом ускорителе частиц. При захвате протона ядром атома 115 его атомный вес увеличивается, возникает атом элемента 116, который сразу же распадается. При распаде элемента 116 высвобождается, или излучается, антиматерия. Что это такое?
Комментариев нет:
Отправить комментарий